Nonlinear THz Plasmonics in Bi₂Se₃ Topological Insulator

P. Di Pietro¹, N. Adhlakh¹, F. Piccirilli², A. Di Gaspare³, S. Oh⁴, A. Perucchi¹ and S. Lupi⁵

¹Elettra-Sincrotrone Trieste S.C.p.A. Area Science Park, SS 14km 163.5 Trieste, Italy
²CNR-IOM Trieste c/o Area Science Park – Basovizza SS 14km 163.5 Trieste, Italy
³NEST, Istituto Nanoscienze, CNR, Scuola Normale Superiore, Piazza S. Silvestro 12, Pisa, Italy
⁴Department of Physics and Astronomy Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, United States
⁵CNR-IOM Dip. di Fisica, Università di Roma Sapienza, P.le Aldo Moro 5, Roma, Italy

Topological insulators are a class of materials which have raised a great interest over the last decade, thanks to their intriguing conduction properties. Indeed, they are insulating in the bulk and metallic at the surface. Moreover, these metallic surface states have linear Dirac dispersion as in the case of graphene [1,2].

Bi₂Se₃ is among the most promising topological insulators, since its band structure provides only one Dirac cone, while the bulk gap is pretty large (about 300 meV) [3].

It has been demonstrated that by terahertz-infrared spectroscopy it is possible to detect the Dirac surface state by patterning thin films of Bi₂Se₃ with ribbons of width from 2 to 20 μm. In this way, a Dirac plasmon is excited and its dispersion recovers very well the theoretical dispersion, calculated by using the parameters of the Dirac carriers [4].

In this scenario, we present here our investigation on the nonlinear regime of patterned films of Bi₂Se₃ with ribbons of width of 4 and 20 μm. By exploiting the intense THz electric field of the TeraFERMI beamline at the FEL (Free Electron Laser) Fermi in Trieste [5], we were able to induce a nonlinear behaviour of the Dirac plasmon. Indeed, we observed a redshift of the plasmonic peak as the incoming THz electric field increases (up to MV/cm).

References